Unigine::Node Class
Header: | #include <UnigineNode.h> |
In terms of Unigine, all of the objects added into the scene are called nodes. Nodes can be of different types, determining their visual representation and behavior.
The node is created and stored in the world. All changes are saved into the .world file.
The node can be also saved into an external .node file and then imported into the world when necessary. Also it is possible to create a reference to the exported node.
You can associate any string data (written directly into a *.node or a *.world file) or an arbitrary user variable with a node.
See Also#
- How to handle ownership
- How to work with the node's matrix transformations
Creating a Node#
The Node class doesn't provide creating of a node. You can create an instance of any class inherited from the Node class and then obtain the node via automatic upcasting
For example:
- Create a box mesh by using the Mesh class.
- Use the box mesh to create an instance of the ObjectMeshStatic class. This class is inherited from the Node class.
- Get the node via upcasting.
// AppWorldLogic.cpp
#include "AppWorldLogic.h"
#include <UnigineNode.h>
#include <UnigineObjects.h>
using namespace Unigine;
using namespace Math;
int AppWorldLogic::init() {
// create a mesh
MeshPtr mesh = Mesh::create();
mesh->addBoxSurface("box_0",vec3(1.0f));
// declare a smart pointer for any type of the node inherited from the Node class (e.g. ObjectMeshStatic)
// and call a constructor of the corresponding class
ObjectMeshStaticPtr object_mesh = ObjectMeshStatic::create(mesh);
// declare a smart pointer for the node
// and obtain the node pointer from the created ObjectMeshStatic
NodePtr node = object_mesh;
return 1;
}
Now you can operate the ObjectMeshStatic instance as a node.
Editing a Node and Saving Changes#
The Node class contains common settings of the node. Also each node has special settings, which vary depending on the type of the node.
Editing the node also includes editing materials and properties assigned to the node.
For the edited node to be saved in the .world file, you should enable the corresponding option via the setSaveToWorldEnabled() method.
For example:
- Create a box mesh by using the Mesh class.
- Save the mesh on the disk. It is required as the node we are going to save to the .world file need to reference to a mesh stored on the disk.
- Use the saved .mesh file to create an instance of the ObjectMeshStatic class. This class is inherited from the Node class.
- Get the node from the ObjectMeshStatic instance via upcasting.
- Enable saving to .world file for the node (and all its children).
- Edit the node and save the world by calling the world_saveconsole command.
#include "AppWorldLogic.h"
#include <UnigineNode.h>
#include <UnigineObjects.h>
#include <UnigineWorld.h>
#include <UnigineConsole.h>
using namespace Unigine;
using namespace Math;
int AppWorldLogic::init() {
// create a mesh
MeshPtr mesh = Mesh::create();
mesh->addBoxSurface("box_0",vec3(1.0f));
// save a mesh into a file on the disk
mesh->save("unigine_project/meshes/my_mesh.mesh");
// declare a smart pointer for any type of the node inherited from the Node class (e.g. ObjectMeshStatic)
// and call a constructor of the corresponding class create an instance of any class inherited from the Node class (e.g. ObjectMeshStatic)
ObjectMeshStaticPtr object_mesh = ObjectMeshStatic::create("unigine_project/meshes/my_mesh.mesh");
// declare a smart pointer for the node,
// obtain the node pointer from the created ObjectMeshStatic,
NodePtr node = object_mesh;
// enable saving the node(and all its children) to a .world file
node->setSaveToWorldEnabledRecursive(true);
// change the node name
node->setName("my_node");
// change node transformation
node->setWorldTransform(translate(Vec3(0.0f, 0.0f, 2.0f)));
// save node changes in the .world file
Console::run("world_save");
return 1;
}
Exporting and Importing a Node#
To export a node stored in the world into the external .node file, you should pass it to the saveNode() method of the World class.
To import the existing node stored in the .node file to the world, you should call the loadNode() method of the World class.
For example:
- Create a box mesh by using the Mesh class.
- Save the mesh on the disk. It is required as the node we are going to export need to reference to a mesh stored on the disk.
- Use the saved .mesh file to create an instance of the ObjectMeshStatic class. This class is inherited from the Node class.
- Get the node from the ObjectMeshStatic instance via upcasting.
- Export the node to an external .node file.
- Import the prevoiusly exported node to check the result.
#include "AppWorldLogic.h"
#include <UnigineNode.h>
#include <UnigineObjects.h>
#include <UnigineWorld.h>
#include <UnigineEditor.h>
#include <UnigineConsole.h>
using namespace Unigine;
using namespace Math;
int AppWorldLogic::init() {
// create a mesh
MeshPtr mesh = Mesh::create();
mesh->addBoxSurface("box_0", vec3(1.0f));
// save a mesh into a file on the disk
mesh->save("unigine_project/meshes/my_mesh.mesh");
// create an instance of any class inherited from the Node class (e.g. ObjectMeshStatic)
ObjectMeshStaticPtr object_mesh = ObjectMeshStatic::create("unigine_project/meshes/my_mesh.mesh");
// declare a smart pointer for the node
// and obtain the node pointer from the created NodeDummy
NodePtr node = object_mesh;
// export the node into a .node file
World::saveNode("unigine_project/nodes/my_node.node", node);
// import the exported node to check the result
NodePtr imported_node = World::loadNode("unigine_project/nodes/my_node.node");
// set position of the node
imported_node->setPosition(Vec3(4.0f, 0.0f, 1.0f));
return 1;
}
Deleting a Node#
By default each new node's lifetime matches the lifetime of the World (i.e. such node shall be deleted when the world is closed). But you can also choose node's lifetime to be managed:
- by the Engine - is this case the node shall be deleted automatically on Engine shutdown.
- manually - is this case the node should be deleted manually by the user.
To delete a node you can use the following two methods:
- deleteLater() - performs delayed deletion, in this case the object will be deleted during the next swap stage of the main loop (rendering of the object ceases immediately, but it still exists in memory for a while, so you can get it from its parent, for example). This method simplifies object deletion from a secondary thread, so you can call it and forget about the details, letting the Engine take control over the process of deletion, which can be used for future optimizations.
- deleteForce() - performs immediate deletion, which might be necessary in some cases. Calling this method for main-loop-dependent objects (e.g., nodes) is safe only when performed from the Main thread.
// AppWorldLogic.cpp
#include <UnigineNode.h>
#include <UnigineObjects.h>
#include <UnigineWorld.h>
#include <UnigineEditor.h>
#include <UnigineConsole.h>
using namespace Unigine;
using namespace Math;
int AppWorldLogic::init() {
// create a mesh
MeshPtr mesh = Mesh::create();
mesh->addBoxSurface("box_0", vec3(1.0f));
// create an instance of any class inherited from the Node class (e.g. ObjectMeshStatic)
ObjectMeshStaticPtr object_mesh = ObjectMeshStatic::create(mesh);
// declare a smart pointer for the node
// and obtain the node pointer from the created NodeDummy
NodePtr node = object_mesh;
// do something with the node
// ...
// delete the node
node.deleteLater();
return 1;
}
Node Class
Enums
CALLBACK_INDEX#
Name | Description |
---|---|
CALLBACK_PROPERTY_NODE_SLOTS_CHANGED = 0 | Callback to be fired on changing the number of node's property slots. Callback function signature is as follows:
void Func(NodePtr node, int num); |
CALLBACK_PROPERTY_NODE_ADD = 1 | Node property added callback. This callback is fired when a new property is assigned to the node. |
CALLBACK_PROPERTY_NODE_SWAP = 2 | Node property swapped callback. This callback is fired when two properties swap their positions in the list of node's properties. |
CALLBACK_PROPERTY_NODE_REMOVE = 3 | Node property removed callback. This callback is fired when a property is removed from the list of node's properties. |
CALLBACK_PROPERTY_CHANGE_ENABLED = 4 | Callback to be fired on changing node's property enabled state. Callback function signature is as follows:
void Func(NodePtr node, PropertyPtr prop, int prop_num); |
CALLBACK_PROPERTY_SURFACE_ADD = 5 | Surface property added callback. This callback is fired when a property is assigned to object's surface. |
CALLBACK_PROPERTY_SURFACE_REMOVE = 6 | Surface property removed callback. This callback is fired when a property is removed from object's surface. |
CALLBACK_CACHE_NODE_ADD = 7 | Callback to be fired on adding a node to cache. Occurs once upon calling NodeReference::create() or World::loadNode() :
void Func(NodePtr node), where node - is a node added to cache. Fired only for the root node. If a nested node reference is loaded, the callback shall be fired for the node at the top of the hierarchy only, the one created by the user. |
CALLBACK_NODE_LOAD = 8 | Callback to be fired on loading a node from a file. Callback function signature is as follows:
void Func(NodePtr node); |
CALLBACK_NODE_CLONE = 9 | Callback to be fired on copying a node via Node::clone():
void Func(NodePtr node_clone, NodePtr node_original), where node - is a node added to cache. Fired only for the root node. |
CALLBACK_NODE_SWAP = 10 | Callback to be fired on swapping a node via Node::clone():
void Func(NodePtr node_clone, NodePtr node_original), where node - is a node added to cache. Fired only for the root node. |
CALLBACK_NODE_REMOVE = 11 | Callback to be fired on deleting a node. Callback function signature is as follows:
void Func(NodePtr node); Fired for each deleted node. |
CALLBACK_NODE_CHANGE_ENABLED = 12 | Callback to be fired on changing node's enabled state. Callback function signature is as follows:
void Func(NodePtr node); Fired for each node that has changed its enabled state. Changing the state of the root node, causes the callback to be fired for all its children as well. |
TYPE#
Name | Description |
---|---|
ANY_TYPE = -1 | Any node type. |
NODE_BEGIN = 0 | Begin of the nodes range. |
NODE_DUMMY = 0 | Dummy node. See the NodeDummy class. |
NODE_LAYER = 1 | Layer node. See the NodeLayer class. |
NODE_TRIGGER = 2 | Node trigger. See the NodeTrigger class. |
NODE_REFERENCE = 3 | Node reference. See the NodeReference class. |
NODE_EXTERN = 4 | Extern node. See the NodeExtern class. |
NODE_END = 4 | End of the nodes range. |
WORLD_BEGIN = 5 | Begin of the world nodes range. |
WORLD_SPLINE_GRAPH = 5 | World spline graph. See the WorldSplineGraph class. |
WORLD_TRIGGER = 6 | World trigger. See the WorldTrigger class. |
WORLD_CLUTTER = 7 | World clutter. See the WorldClutter class. |
WORLD_SWITCHER = 8 | Node switcher (to switch off parts of the world). See the WorldSwitcher class. |
WORLD_OCCLUDER = 9 | World occluder. See the WorldOccluder class. |
WORLD_OCCLUDER_MESH = 10 | World mesh occluder. See the WorldOccluderMesh class. |
WORLD_TRANSFORM_PATH = 11 | Path defined transformer. See the WorldTransformPath |
WORLD_TRANSFORM_BONE = 12 | Bone defined transformer. See the WorldTransformBone class. |
WORLD_EXPRESSION = 13 | Node which allows to execute arbitrary expression. See the WorldExpression class. |
WORLD_EXTERN = 14 | External world. See the WorldExtern class. |
WORLD_END = 14 | End of the world nodes range. |
GEODETIC_BEGIN = 15 | Begin of the geodetic nodes range. |
GEODETIC_PIVOT = 15 | Geodetic Pivot node. See the GeodeticPivot class. |
GEODETIC_END = 15 | End of the geodetic nodes range. |
FIELD_BEGIN = 16 | Begin of the field nodes range. |
FIELD_SPACER = 16 | Field Spacer node. See the FieldSpacer class. |
FIELD_ANIMATION = 17 | Field Animation node. See the FieldAnimation class. |
FIELD_HEIGHT = 18 | Field Height node. See the FieldHeight class. |
FIELD_SHORELINE = 19 | Field Shoreline node. See the FieldShoreline class. |
FIELD_WEATHER = 20 | Field Weather node. See the FieldWeather class. |
FIELD_END = 20 | End of the field nodes range. |
LIGHT_BEGIN = 21 | Begin of the light nodes range. |
LIGHT_VOXEL_PROBE = 21 | Voxel probe. See the LightVoxelProbe class. |
LIGHT_ENVIRONMENT_PROBE = 22 | Environment probe. See the LightEnvironmentProbe class. |
LIGHT_PLANAR_PROBE = 23 | |
LIGHT_OMNI = 24 | Omni-directional light source. See the LightOmni class. |
LIGHT_PROJ = 25 | Projected light source. See the LightProj class. |
LIGHT_WORLD = 26 | World light source. See the LightWorld class. |
LIGHT_END = 26 | End of the light nodes range. |
DECAL_BEGIN = 27 | Begin of the decal nodes range. |
DECAL_PROJ = 27 | Projected decal node. See the DecalProj class. |
DECAL_ORTHO = 28 | Orthographic decal node. See the DecalOrtho class. |
DECAL_MESH = 29 | Mesh decal node. See the DecalMesh class. |
DECAL_END = 29 | End of the decal nodes range. |
LANDSCAPE_LAYER_BEGIN = 30 | Beginning of the landscape layers range. |
LANDSCAPE_LAYER_MAP = 30 | Landscape Layer Map. See the LandscapeLayerMap class. |
LANDSCAPE_LAYER_END = 30 | End of the landscape layers range. |
OBJECT_BEGIN = 31 | Begin of the object nodes range. |
OBJECT_DUMMY = 31 | Dummy object. See the ObjectDummy class. |
OBJECT_DYNAMIC = 32 | Dynamic object. See the ObjectDynamic class. |
OBJECT_MESH_STATIC = 33 | Static mesh object. See the ObjectMeshStatic class. |
OBJECT_MESH_CLUSTER = 34 | Mesh Cluster object. See the ObjectMeshCluster class. |
OBJECT_MESH_CLUTTER = 35 | Mesh Clutter object. See the ObjectMeshClutter class. |
OBJECT_MESH_SKINNED = 36 | Skinned mesh object. See the ObjectMeshSkinned class. |
OBJECT_MESH_DYNAMIC = 37 | Dynamic mesh object. See the ObjectMeshDynamic class. |
OBJECT_MESH_SPLINE_CLUSTER = 38 | Mesh Spline Cluster object. See the ObjectMeshSplineCluster class. |
OBJECT_TERRAIN_GLOBAL = 40 | Terrain global object. See the ObjectTerrainGlobal class. |
OBJECT_GRASS = 41 | Grass. See the ObjectGrass class. |
OBJECT_PARTICLES = 42 | Particles object. See the ObjectParticles class. |
OBJECT_BILLBOARDS = 43 | Billboards object for rendering a high number of billboards. See the ObjectBillboard class. |
OBJECT_VOLUME_BOX = 44 | Volume box object. See the ObjectVolumeBox class. |
OBJECT_VOLUME_SPHERE = 45 | Volume sphere object. See the ObjectVolumeSphere class. |
OBJECT_VOLUME_OMNI = 46 | Volume omni light object. See the ObjectVolumeOmni class. |
OBJECT_VOLUME_PROJ = 47 | Volume projected light object. See the ObjectVolumeProj class. |
OBJECT_GUI = 48 | GUI object. See the ObjectGui class. |
OBJECT_GUI_MESH = 49 | GUI mesh object. See the ObjectGuiMesh class. |
OBJECT_WATER_GLOBAL = 50 | Water global object. See the ObjectWaterGlobal class. |
OBJECT_WATER_MESH = 51 | Water mesh object. See the ObjectWaterMesh class. |
OBJECT_SKY = 52 | Sky object. See the ObjectSky class. |
OBJECT_LANDSCAPE_TERRAIN = 39 | LandscapeTerrain object. See the ObjectLandscapeTerrain class. |
OBJECT_CLOUD_LAYER = 53 | Cloud layer object. See the ObjectCloudLayer class. |
OBJECT_EXTERN = 54 | Extern object. See the ObjectExtern class. |
OBJECT_TEXT = 55 | Text object. See the ObjectText class. |
OBJECT_END = 55 | End of the object nodes range. |
PLAYER_BEGIN = 56 | Begin of the player nodes range. |
PLAYER_DUMMY = 56 | Dummy player. See the PlayerDummy class. |
PLAYER_SPECTATOR = 57 | Observing player. See the PlayerSpectator class. |
PLAYER_PERSECUTOR = 58 | Persecuting player. See the PlayerPersecutor class. |
PLAYER_ACTOR = 59 | Acting player. See the PlayerActor class. |
PLAYER_END = 59 | End of the player nodes range. |
PHYSICAL_BEGIN = 60 | Begin of the physical nodes range. |
PHYSICAL_WIND = 60 | Physical wind object. See the PhysicalWind class. |
PHYSICAL_FORCE = 61 | Physical force node that allows to simulate point forces applied to dynamic objects. See the PhysicalForce class. |
PHYSICAL_NOISE = 62 | Physical noise node that allows to simulate force field. See the PhysicalNoise class. |
PHYSICAL_WATER = 63 | Physical water object that has no visual representation. See the PhysicalWater class. |
PHYSICAL_TRIGGER = 64 | Physical trigger. See the PhysicalTrigger class. |
PHYSICAL_END = 64 | End of the physical nodes range. |
NAVIGATION_BEGIN = 65 | Begin of the navigation nodes range. |
NAVIGATION_SECTOR = 65 | Sector within which pathfinding is performed. See the NavigationSector class. |
NAVIGATION_MESH = 66 | Mesh-based navigation area across which pathfinding is performed. See the NavigationMesh class. |
NAVIGATION_END = 66 | End of the navigation nodes range. |
OBSTACLE_BEGIN = 67 | Begin of the obstacle nodes range. |
OBSTACLE_BOX = 67 | Obstacle in the shape of a box avoided by pathfinding. See the ObstacleBox class. |
OBSTACLE_SPHERE = 68 | Obstacle in the shape of a sphere avoided by pathfinding. See the ObstacleSphere class. |
OBSTACLE_CAPSULE = 69 | Obstacle in the shape of a capsule avoided by pathfinding. See the ObstacleCapsule class. |
OBSTACLE_END = 69 | End of the obstacle nodes range. |
SOUND_BEGIN = 70 | Begin of the sound nodes range. |
SOUND_SOURCE = 70 | Sound source. See the SoundSource class. |
SOUND_REVERB = 71 | Sound reverberation zone. See the SoundReverb class. |
SOUND_END = 71 | End of the sound nodes range. |
NUM_NODES = 72 | Counter of node types. |
NUM_WORLDS = WORLD_END - WORLD_BEGIN + 1 | Counter of world node types. |
NUM_GEODETICS = GEODETIC_END - GEODETIC_BEGIN + 1 | Counter of geodetic node types. |
NUM_FIELDS = FIELD_END - FIELD_BEGIN + 1 | Counter of field node types. |
NUM_LIGHTS = LIGHT_END - LIGHT_BEGIN + 1 | Counter of light node types. |
NUM_DECALS = DECAL_END - DECAL_BEGIN + 1 | Counter of decal node types. |
NUM_OBJECTS = OBJECT_END - OBJECT_BEGIN + 1 | Counter of object node types. |
NUM_PLAYERS = PLAYER_END - PLAYER_BEGIN + 1 | Counter of player node types. |
NUM_PHYSICALS = PHYSICAL_END - PHYSICAL_BEGIN + 1 | Counter of physical node types. |
NUM_NAVIGATIONS = NAVIGATION_END - NAVIGATION_BEGIN + 1 | Counter of navigation node types. |
NUM_OBSTACLES = OBSTACLE_BEGIN - OBSTACLE_END + 1 | Counter of obstacle node types. |
NUM_SOUNDS = SOUND_END - SOUND_BEGIN + 1 | Counter of sound node types. |
DUMMY = 0 | Dummy node. See the NodeDummy class. |
LAYER = 1 | Node layer containing parent layer and all its child nodes. See the NodeLayer class. |
TRIGGER = 2 | Dummy node that can fire callbacks on its enabling/disabling or repositioning. See the NodeTrigger class. |
REFERENCE = 3 | Node that references an external NODE file. See the NodeReference class. |
EXTERN = 4 | Extern node. |
LIFETIME#
Members
Ptr<Node> getAncestor ( int num ) #
Returns a node ancestor by its number.Arguments
- int num - Ancestor ID.
Return value
Ancestor node.Math::vec3 getBodyAngularVelocity ( ) #
Returns the angular velocity of the node's physical body in the world space.Return value
Angular velocity in the local space.BoundBox getBoundBox ( ) #
Returns the bounding box of the node.Return value
Bounding box of the node.BoundSphere getBoundSphere ( ) #
Returns the bounding sphere of the node.Return value
Bounding sphere of the node.Ptr<Node> getChild ( int num ) #
Returns a node child by its number.Arguments
- int num - Child ID.
Return value
Child node.bool isChild ( const Ptr<Node> & n ) #
Checks if a given node is a child of the node.Arguments
- const Ptr<Node> & n - Node to check.
Return value
true if the given node is a child; otherwise, false.void setChildIndex ( const Ptr<Node> & n, int index ) #
Sets the index for a given child node of the node.Arguments
- const Ptr<Node> & n - Child node.
- int index - Node index.
int getChildIndex ( const Ptr<Node> & n ) #
Returns the index of a given child node of the node.Arguments
- const Ptr<Node> & n - Child node.
Return value
Node index.void setImmovable ( bool immovable ) #
Sets a value indicating if the node represents an immovable (clutter) object, which means it is moved to a separate spatial tree for immovable (static) objects optimizing node management.Arguments
- bool immovable - true to mark the node as an immovable object; otherwise, false.
bool isImmovable ( ) #
Returns a value indicating if the node is an immovable (clutter) object, which means it is moved to a separate spatial tree for immovable (static) objects optimizing node management.Return value
true if the node is a clutter object; otherwise, false.void setClutterInteractionEnabled ( bool enabled ) #
Sets a value indicating if interaction with World Clutters and Mesh Clutters is enabled for the node.Arguments
- bool enabled
bool isClutterInteractionEnabled ( ) #
Returns a value indicating if interaction with World Clutters and Mesh Clutters is enabled for the node.Return value
true if interaction with World Clutters and Mesh Clutters is enabled; otherwise, false.void setGrassInteractionEnabled ( bool enabled ) #
Sets a value indicating if interaction with Grass nodes is enabled for the node.Arguments
- bool enabled - true to enable interaction with Grass nodes, false to disable it.
bool isGrassInteractionEnabled ( ) #
Returns a value indicating if interaction with Grass nodes is enabled for the node.Return value
true if interaction with Grass nodes is enabled; otherwise, false.void setTriggerInteractionEnabled ( bool enabled ) #
Sets a value indicating if interaction with WorldTrigger nodes is enabled for the node.Arguments
- bool enabled - 1 to enable interaction with World Triggers, 0 to disable it.
bool isTriggerInteractionEnabled ( ) #
Returns a value indicating if interaction with WorldTrigger nodes is enabled for the node.Return value
true if interaction with WorldTrigger nodes is enabled; otherwise, false.void setData ( const char * name, const char * data ) #
Sets user data associated with the node.- If the node was loaded from the *.node file, data is saved directly into the data tag of this file.
- If the node is loaded from the *.world file, data is saved into the Node data tag of the *.world file.
- If the node is loaded from the *.world file as a NodeReference, data will be saved to the NodeReference data tag of the *.world file.
Arguments
- const char * name - String containing a key identifying user data to be stored in the *.node file.The "editor_data" key is reserved for the UnigineEditor.
- const char * data - New user data. Data can contain an XML formatted string.
const char * getData ( const char * name ) #
Returns user data associated with the node.- If the node was loaded from the *.node file, data from the data tag of this file is returned.
- If the node is loaded from the *.world file, data from the Node data tag of the *.world file is returned.
- If the node is loaded from the *.world file as a NodeReference, data from the NodeReference data tag of the *.world file is returned.
Arguments
- const char * name - String containing a key identifying user data stored in the *.node file.The "editor_data" key is reserved for the UnigineEditor.
Return value
User string data. Data can be an xml formatted string.bool isDecal ( ) const#
Returns a value indicating if the node is a decal node (its type is DECAL_*).Return value
true if the node is a decal node; otherwise, false.void setEnabled ( bool enabled ) #
Enables or disables the node.Arguments
- bool enabled - true to enable the node, false to disable it.
void updateEnabled ( ) #
Updates node's internal state according to the current "enabled" state.bool isEnabled ( ) #
Returns a value indicating if the node and its parent nodes are enabled.Return value
true if the node and its parent nodes are enabled; otherwise, false.bool isEnabledSelf ( ) #
Returns a value indicating if the node is enabled.Return value
true if the node is enabled; otherwise, false.bool isExtern ( ) #
Returns a value indicating if the node is an extern node (its type is one of the following: NODE_EXTERN, OBJECT_EXTERN, WORLD_EXTERN).Return value
true if the node is an extern node; otherwise, false.bool isField ( ) #
Returns a value indicating if the node is a field node (its type is one of the FIELD_*).Return value
true if the node is a field node; otherwise, false.bool isGeodetic ( ) const#
Returns a value indicating if the node is a geodetic-related node.Return value
true if the node is a geodetic-related node; otherwise, false.Ptr<GeodeticPivot> getGeodeticPivot ( ) #
Returns a pointer to geodetic pivot of the node.Return value
Geodetic pivot smart pointer, or NULL if the node is not a child of a geodetic pivot node.void setHandled ( bool handled ) #
Disables or shows the node handle. This option is valid only for invisible nodes, such as light and sound sources, particle systems and world-managing nodes (WorldOccluder, triggers, expressions, etc.)Arguments
- bool handled
bool isHandled ( ) #
Returns a value indicating if the node handle is displayed. This option is valid only for invisible nodes, such as light and sound sources, particle systems and world-managing nodes (WorldOccluder, triggers, expressions, etc.)Return value
true if the handle is shown; otherwise, false.void getHierarchy ( Vector< Ptr<Node> > & hierarchy ) #
Retrieves the whole hierarchy of the node and puts it to the hierarchy buffer.Arguments
void setID ( int id ) const#
Sets a unique ID for the node.Arguments
- int id - Node ID.
int getID ( ) #
Returns the ID of the node.Return value
Node ID.Math::Mat4 getIWorldTransform ( ) #
Returns the inverse transformation matrix of the node for transformations in the world coordinates.Return value
Inverse transformation matrix.bool isLight ( ) const#
Returns a value indicating if the node is a light source (its type is LIGHT_*).Return value
true if the node is a light source; otherwise, false.bool isLandscapeLayer ( ) const#
Returns a value indicating if the node is a landscape layer (its type is LANDSCAPE_LAYER_*).Return value
true if the node is a landscape layer; otherwise, false.Math::vec3 getBodyLinearVelocity ( ) #
Returns the linear velocity of the node's physical body in the local space.Return value
Linear velocity in the local space.void setName ( const char * name ) #
Sets a name for the node.Arguments
- const char * name - New name of the node.
const char * getName ( ) #
Returns the name of the node.Return value
Name of the node.bool isNavigation ( ) #
Returns a value indicating if a given node is a navigation node.Return value
true if the given node is a navigation node; otherwise, false.Ptr<Node> getNode ( int id ) #
Returns a node pointer.Arguments
- int id - Node identifier.
Return value
Node pointer.int isNode ( const Ptr<Node> & node ) #
Check the node pointer.Arguments
- const Ptr<Node> & node - Node pointer.
Return value
1 if the node is valid; otherwise, 0.int isNode ( int id ) #
Check the node pointer.Arguments
- int id - Node pointer.
Return value
1 if the node is valid; otherwise, 0.int getNumAncestors ( ) const#
Returns the number of ancestors of the node.Return value
Number of ancestors.int getNumChildren ( ) const#
Returns the number of children of the node.Return value
Number of child nodes.bool isObject ( ) #
Returns a value indicating if the node is an object node (its type is OBJECT_*).Return value
true if the node is an object node; otherwise, false.Ptr<Body> getObjectBody ( ) #
Returns a physical body assigned to the node if it is an object node.Return value
Body assigned to the object node; otherwise, NULL (0).Ptr<BodyRigid> getObjectBodyRigid ( ) #
Returns a rigid body assigned to the node if it is an object node.Return value
Rigid body assigned to the object node; otherwise, NULL (0).bool isObstacle ( ) #
Returns a value indicating if the node is an obstacle node (its type is OBSTACLE_*).Return value
true if the given node is an obstacle node; otherwise, false.void setOldWorldTransform ( const Math::Mat4 & transform ) #
Sets old (previous frame) transformation matrix for the node in world coordinates.Arguments
- const Math::Mat4 & transform - Old (previous frame) transformation matrix to be set.
Math::Mat4 getOldWorldTransform ( ) #
Returns old (previous frame) transformation matrix for the node in world coordinates.Return value
Old (previous frame) transformation matrix.Math::Vec3 getOldWorldPosition ( ) const#
Returns old (previous frame) position of the node in world coordinates.Return value
Old (previous frame) position of the node.void setParent ( const Ptr<Node> & parent ) #
Sets the new parent for the node. Transformations of the current node will be done in the coordinates of the parent.Arguments
- const Ptr<Node> & parent - New parent node or NULL (0).
Ptr<Node> getParent ( ) #
Returns the parent of the node.Return value
Parent node or NULL (0), if the node has no parent.bool isPhysical ( ) #
Returns a value indicating if the node is a physical node (its type is PHYSICAL_*).Return value
true if the node is a physical node; otherwise, false.bool isPlayer ( ) #
Returns a value indicating if the node is a player node (its type is PLAYER_*).Return value
true if the node is a player node; otherwise, false.void setPosition ( const Math::Vec3 & pos ) #
Sets the node position.Arguments
- const Math::Vec3 & pos - Node position in the local space
Math::Vec3 getPosition ( ) #
Returns the node position.Return value
Node position in the local spacePtr<Node> getPossessor ( ) #
Returns a possessor of the node. The following nodes can be possessors:- NodeReference
- WorldCluster
- WorldClutter
- WorldLayer
Return value
Node posessor, if it exists; otherwise, NULL.int getNumProperties ( ) #
Returns the total number of properties associated with the node.Return value
Total number of properties associated with the node.int addProperty ( const char * name ) #
Inherits a new property from the one with the given name and adds it to the list of properties associated with the node. The inherited property will be internal, such properties are saved in a *.world or *.node file.Arguments
- const char * name - Name of the property to be added.
Return value
Index of the new node property if it was added successfully; otherwise, -1.int addProperty ( const UGUID & guid ) #
Inherits a new property from the one with the given GUID and adds it to the list of properties associated with the node. The inherited property will be internal, such properties are saved in a *.world or *.node file.Arguments
Return value
Index of the new node property if it was added successfully; otherwise, -1.int addProperty ( const Ptr<Property> & property ) #
Inherits a new property from the specified one and adds it to the list of properties associated with the node. The inherited property will be internal, such properties are saved in a *.world or *.node file.Arguments
Return value
Index of the new node property if it was added successfully; otherwise, -1.int insertProperty ( int num, const char * name ) #
Inserts the property with the specified name at the specified position.Arguments
- int num - Position at which a new property is to be inserted, in the range from 0 to the total number of node properties.
- const char * name - Name of the property to be inserted.
Return value
int insertProperty ( int num, const UGUID & guid ) #
Inserts the property with the specified GUID at the specified position.Arguments
- int num - Position at which a new property is to be inserted, in the range from 0 to the total number of node properties.
- const UGUID & guid - GUID of the property to be inserted.
Return value
int insertProperty ( int num, const Ptr<Property> & property ) #
Inserts the specified property at the specified position.Arguments
- int num - Position at which a new property is to be inserted, in the range from 0 to the total number of node properties.
- const Ptr<Property> & property - Property to be added.
Return value
int setProperty ( const char * name ) #
Updates the first node property (the one with a 0 index) in the list of properties associated with the node. A new internal property inherited from the one with the specified name will be set. Such internal properties are saved in a *.world or *.node file.Arguments
- const char * name - Name of the property to be set.
Return value
int setProperty ( const UGUID & guid ) #
Updates the first node property (the one with a 0 index) in the list of properties associated with the node. A new internal property inherited from the one with the specified GUID will be set. Such internal properties are saved in a *.world or *.node file.Arguments
Return value
int setProperty ( const Ptr<Property> & property ) #
Updates the first node property (the one with a 0 index) in the list of properties associated with the node. A new internal property inherited from the one specified will be set. Such internal properties are saved in a *.world or *.node file.Arguments
Return value
int setProperty ( int num, const char * name ) #
Updates the node property with the specified number. A new internal property inherited from the one with the specified name will be set. Such internal properties are saved in a *.world or *.node file.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
- const char * name - Name of the property to be set.
Return value
int setProperty ( int num, const UGUID & guid ) #
Updates the node property with the specified number. A new internal property inherited from the one with the specified GUID will be set. Such internal properties are saved in a *.world or *.node file.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
- const UGUID & guid - GUID of the property to be set.
Return value
int setProperty ( int num, const Ptr<Property> & property ) #
Updates the node property with the specified number. A new internal property inherited from the specified one will be set. Such internal properties are saved in a *.world or *.node file.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
- const Ptr<Property> & property - Property to be set.
Return value
void setPropertyEnabled ( int num, bool enable ) #
Enables or disables the node property with the specified number.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
- bool enable - true to enable the specified node property, false to disable it.
bool isPropertyEnabled ( int num ) #
Returns a value indicating if the node property with the specified number is enabled.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
Return value
true if the specified property is enabled; otherwise, false.void swapProperty ( int from_num, int to_num ) #
Swaps two properties with specified numbers in the list of properties associated with the node.Arguments
- int from_num - Number of the first node property to be swapped, in the range from 0 to the total number of node properties.
- int to_num - Number of the second node property to be swapped, in the range from 0 to the total number of node properties.
void removeProperty ( int num ) #
Removes the node property with the specified number.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
void removeProperty ( const char * name ) #
Removes the node property that has the specified name.Arguments
- const char * name - Name of the node property to be removed.
void removeProperty ( const UGUID & guid ) #
Removes the node property that has the GUID or parent GUID equal to the specified one.Arguments
void removeProperty ( const Ptr<Property> & property ) #
Removes the specified node property or a node property inherited from it.Arguments
void clearProperties ( ) #
Clears the list of properties associated with the node.Ptr<Property> getProperty ( int num ) #
Returns a node property with the specified number if it exists.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
Return value
Node property smart pointer, if exists; otherwise, NULL.const char * getPropertyName ( int num ) #
Returns the name of a node property with the specified number.Arguments
- int num - Node property number in the range from 0 to the total number of node properties.
Return value
Property name, if exists; otherwise, NULL.int findProperty ( const char * name ) #
Searches for a property with the specified name among the ones assigned to the node.Arguments
- const char * name - GUID of a node property to be found.
Return value
Node property number in the range from 0 to the total number of node properties if such a property exists; otherwise -1.int findProperty ( const UGUID & guid ) #
Searches for a property with the specified GUID among the ones assigned to the node.Arguments
Return value
Node property number in the range from 0 to the total number of node properties if such a property exists; otherwise -1.int findProperty ( const Ptr<Property> & property ) #
Searches for a specified property among the ones assigned to the node.Arguments
Return value
Node property number in the range from 0 to the total number of node properties if such a property exists; otherwise -1.void setQuery ( bool query ) #
Updates a value indicating if occlusion query is used for the node.Arguments
- bool query - true to use occlusion query, false not to use.
bool isQuery ( ) #
Returns a value indicating if occlusion query is used for the node. The default is false (not used).Return value
true if occlusion query is used; otherwise, false.bool hasQueryForce ( ) const#
Returns a value indicating if the Culled By Occlusion Query option is force-enabled for the node by the Engine.Return value
true if the Culled By Occlusion Query option is force-enabled for the node by the Engine; otherwise, false.Ptr<Node> getRootNode ( ) #
Returns the root node for the node. This method searches for the root node among all node's parents and posessors up the hierarchy. If a node does not have a parent or posessor the node itself will be returned.Return value
Root node for the node.void setRotation ( const Math::quat & rot, bool identity = 0 ) #
Sets the node rotation.Arguments
- const Math::quat & rot - Quaternion representing node rotation in the local space.
- bool identity - Flag indicating if node's scale is to be ignored or taken into account:
- false - node's scale is taken into account. In this case additional calculations are performed to extract current node's scale and apply it when building the final transformation matrix. These additional operations reduce performance and may lead to error accumulation.
- true - node's scale is ignored (assumed to be equal to 1 along all axes). Thus, the number of calculations performed for each rotation is reduced and error accumulation is minimal.
- It is recommended to set this flag for all non-scaled nodes to improve performance and accuracy.
- Scaling of nodes should be avoided whenever possible, as it requires addidional calculations and may lead to error accumulation.
Math::quat getRotation ( ) #
Returns the node rotation.Return value
Quaternion representing node rotation in the local space.void setWorldRotation ( const Math::quat & rot, bool identity = 0 ) #
Sets the node rotation in the world space.Arguments
- const Math::quat & rot - Node rotation in the world space.
- bool identity - Flag indicating if node's scale is to be ignored or taken into account:
- false - node's scale is taken into account. In this case additional calculations are performed to extract current node's scale and apply it when building the final transformation matrix. These additional operations reduce performance and may lead to error accumulation.
- true - node's scale is ignored (assumed to be equal to 1 along all axes). Thus, the number of calculations performed for each rotation is reduced and error accumulation is minimal.
- It is recommended to set this flag for all non-scaled nodes to improve performance and accuracy.
- Scaling of nodes should be avoided whenever possible, as it requires addidional calculations and may lead to error accumulation.
Math::quat getWorldRotation ( ) #
Returns the node rotation in the world space.Return value
Node rotation in the world space.void setScale ( const Math::vec3 & s ) #
Sets the scale of the node.Arguments
- const Math::vec3 & s - Node scale in the local space.
Math::vec3 getScale ( ) #
Returns the scale of the node.Return value
Node scale in the local space.bool isSound ( ) #
Returns a value indicating if the node is a sound node (its type is SOUND_*).Return value
void setTransform ( const Math::Mat4 & transform ) #
Sets the transformation matrix for the node in local coordinates.Arguments
- const Math::Mat4 & transform - New transformation matrix to be set for the node (local coordinates).
void setTransformWithoutChildren ( const Math::Mat4 & transform ) #
Sets the transformation matrix for the node in local coordinates (transformations of all node's children are not affected). This method can be used to change node's transformation relative to its children.Arguments
- const Math::Mat4 & transform - New transformation matrix to be set for the node (local coordinates).
Math::Mat4 getTransform ( ) #
Returns the transformation matrix of the node in local coordinates.Return value
Transformation matrix.Node::TYPE getType ( ) const#
Returns the type of the node.Return value
Node type identifier.Node::TYPE getTypeID ( const char * type ) #
Returns the ID of a node type with a given name.Arguments
- const char * type - Node type name.
Return value
Node type ID, if such type exists; otherwise, -1.const char * getTypeName ( ) #
Returns a name of the node type.Return value
Node type name.const char * getTypeName ( Node::TYPE type ) const#
Returns the name of a node type with a given ID.Arguments
- Node::TYPE type - Node type ID.
Return value
Node type name.void setVariable ( const char * name, const Variable & v ) #
Sets the value of a variable with a given name. If such variable does not exist it will be added with a specified value.NodeDummyPtr container;
if(container->hasVariable("key1")) {
container->setVariable("key1",42);
}
int value = container->getVariable("key1");
container->removeVariable("key1");
Arguments
- const char * name - Variable name.
- const Variable & v - Variable value.
void setVariable ( const Variable & v ) #
Sets the value of the single unnamed variable parameter of the node. If this variable does not exist it will be created with a specified value.Arguments
- const Variable & v - Variable value.
Variable getVariable ( const char * name ) #
Returns the variable with a given name.NodeDummyPtr container;
if(container->hasVariable("key1")) {
container->setVariable("key1",42);
}
int value = container->getVariable("key1");
container->removeVariable("key1");
Arguments
- const char * name - Variable name.
Return value
Variable if it exists; otherwise, variable with 0 value.Variable getVariable ( ) #
Returns the single unnamed variable parameter of the node.Return value
Variable if it exists; otherwise, variable with 0 value.bool isWorld ( ) const#
Returns a value indicating if the node is a world node (its type is WORLD_*).Return value
true if the node is a world node; otherwise, false.Math::WorldBoundBox getWorldBoundBox ( ) #
Returns the bounding box of the node in world's coordinate system.Return value
World bounding box.Math::WorldBoundSphere getWorldBoundSphere ( ) #
Returns the bounding sphere of the node in world's coordinate system.Return value
World bounding sphere.void setWorldParent ( const Ptr<Node> & n ) #
Sets the new parent of the node. Transformations of the current node will be done in the world coordinates.Arguments
- const Ptr<Node> & n - New parent node or NULL (0).
void setWorldPosition ( const Math::Vec3 & pos ) #
Sets the node position in the world coordinates.Arguments
- const Math::Vec3 & pos
Math::Vec3 getWorldPosition ( ) #
Returns the node position in the world coordinates.Return value
Node position in the world space.void setWorldScale ( const Math::vec3 & s ) #
Sets the node scale in the world space.Arguments
- const Math::vec3 & s - Node scale in the world space.
Math::vec3 getWorldScale ( ) #
Returns the node scale in the world space.Return value
Node scale in the world space.void setWorldTransform ( const Math::Mat4 & transform ) #
Sets the transformation matrix for the node in world coordinates.Arguments
- const Math::Mat4 & transform - New transformation matrix to be set for the node (world coordinates).
void setWorldTransformWithoutChildren ( const Math::Mat4 & transform ) #
Sets the transformation matrix for the node in world coordinates (transformations of all node's children are not affected). This method can be used to change node's transformation relative to its children.Arguments
- const Math::Mat4 & transform - New transformation matrix to be set for the node (world coordinates).
Math::Mat4 getWorldTransform ( ) #
Returns the transformation matrix of the node in the world coordinates.Return value
Transformation matrix.Math::vec3 getBodyWorldVelocity ( const Math::Vec3 & point ) #
Returns linear velocity of a point of the node's physical body in the world space.Arguments
- const Math::Vec3 & point
Return value
Linear velocity in the world space.void addChild ( const Ptr<Node> & n ) #
Adds a child to the node. Transformations of the new child will be done in the coordinates of the parent.Arguments
- const Ptr<Node> & n - New child node.
void addWorldChild ( const Ptr<Node> & n ) #
Adds a child to the node. Transformations of the new child will be done in the world coordinates.Arguments
- const Ptr<Node> & n - New child node.
Ptr<Node> clone ( ) const#
Clones the node.Return value
Cloned node.int findAncestor ( int type ) #
Returns the ID of node's ancestor of a given type.Arguments
- int type - Ancestor type identifier. One of the NODE_* pre-defined variables.
Return value
Ancestor ID if it exists; otherwise -1.int findAncestor ( const char * name ) #
Returns the ID of node's ancestor with a given name.Arguments
- const char * name - Ancestor name.
Return value
Ancestor ID if it exists; otherwise -1.int findChild ( const char * name ) #
Searches for a child node with a given name among the children of the node.Arguments
- const char * name - Name of the child node.
Return value
Child node number, if it is found; otherwise, -1.Ptr<Node> findNode ( const char * name, int recursive = 0 ) #
Searches for a node with a given name among the children of the node.Arguments
- const char * name - Name of the child node.
- int recursive - 1 if the search is recursive (i.e. performed for children of child nodes); otherwise, 0.
Return value
Child node, if it is found; otherwise, NULL.int hasVariable ( const char * name ) #
Returns a value indicating if the node has a variable parameter with a given name.NodeDummyPtr container;
if(container->hasVariable("key1")) {
container->setVariable("key1",42);
}
int value = container->getVariable("key1");
container->removeVariable("key1");
Arguments
- const char * name - Variable name.
Return value
1 if the node has a variable parameter with a given name; otherwise, 0.int hasVariable ( ) #
Returns a value indicating if the node has a single unnamed variable parameter.Return value
1 if the node has a single unnamed variable parameter; otherwise, 0.bool loadWorld ( const Ptr<Xml> & xml ) #
Loads a node state from the Xml.Arguments
Return value
void removeChild ( const Ptr<Node> & n ) #
Removes a child node (added by the addChild() method) from the list of children.Arguments
- const Ptr<Node> & n - Child node to remove.
void removeVariable ( const char * name ) #
Removes a variable parameter with a given name.NodeDummyPtr container;
if(container->hasVariable("key1")) {
container->setVariable("key1",42);
}
int value = container->getVariable("key1");
container->removeVariable("key1");
Arguments
- const char * name - Variable parameter name.
Return value
void removeWorldChild ( const Ptr<Node> & n ) #
Removes a child node (added by the addWorldChild() method) from the list of children.Arguments
- const Ptr<Node> & n - Child node to remove.
void renderVisualizer ( ) #
Renders a bounding box / sphere of the object.bool saveState ( const Ptr<Stream> & stream ) #
Saves a node state to a binary stream.Example using saveState() and restoreState() methods:
// initialize a node and set its state
NodeDummyPtr node = NodeDummy::create();
node->setPosition(vec3(1, 1, 0));
// save state
BlobPtr blob_state = Blob::create();
node->saveState(blob_state);
// change state
node->setPosition(vec3(0, 0, 0));
// restore state
blob_state->seekSet(0); // returning the carriage to the start of the blob
node->restoreState(blob_state);
Arguments
Return value
true if node state is successfully saved; otherwise, false.bool restoreState ( const Ptr<Stream> & stream ) #
Restores a node state from a binary stream.Example using saveState() and restoreState() methods:
// initialize a node and set its state
NodeDummyPtr node = NodeDummy::create();
node->setPosition(vec3(1, 1, 0));
// save state
BlobPtr blob_state = Blob::create();
node->saveState(blob_state);
// change state
node->setPosition(vec3(0, 0, 0));
// restore state
blob_state->seekSet(0); // returning the carriage to the start of the blob
node->restoreState(blob_state);
Arguments
Return value
true if node state is successfully restored; otherwise, false.bool saveWorld ( const Ptr<Xml> & xml ) #
Saves the node into the Xml.Arguments
Return value
true if the node is successfully saved; otherwise, false.void swap ( const Ptr<Node> & n ) const#
Swaps two nodes.Arguments
- const Ptr<Node> & n - Node to swap.
Math::vec3 toLocal ( const Math::Vec3 & p ) #
Converts a given vector in the world space to the node's local space.Arguments
- const Math::Vec3 & p - Vector in the world space.
Return value
Vector in the local space.Math::Vec3 toWorld ( const Math::vec3 & p ) #
Converts a given vector in the local space to the world space.Arguments
- const Math::vec3 & p - Vector in the local space.
Return value
Vector in the world space.void translate ( const Math::Vec3 & t ) #
Translates the node relative to its local coordinate system: the parent node transformation isn't taken into account.Arguments
- const Math::Vec3 & t - Translation vector.
void translate ( Math::Scalar x, Math::Scalar y, Math::Scalar z ) #
Translates the node relative to its local coordinate system: the parent node transformation isn't taken into account.Arguments
- Math::Scalar x - Node translation along the X axis, in units.
- Math::Scalar y - Node translation along the Y axis, in units.
- Math::Scalar z - Node translation along the Z axis, in units.
void worldTranslate ( const Math::Vec3 & t ) #
Translates the node in the world space using the specified vector.Arguments
- const Math::Vec3 & t - Translation vector.
void worldTranslate ( Math::Scalar x, Math::Scalar y, Math::Scalar z ) #
Translates the node in the world space using the values specified for the corresponding axes.Arguments
- Math::Scalar x - Node translation along the X axis, in units.
- Math::Scalar y - Node translation along the Y axis, in units.
- Math::Scalar z - Node translation along the Z axis, in units.
void worldLookAt ( const Math::Vec3 & target, const Math::vec3 & up ) #
Reorients the node to "look" at the target point and sets the given up vector:- If the node is a Player-related one, it will "look" at the target point along the negative Z axis. The Y axis will be oriented along the specified up vector.
- Other nodes will "look" at the target point along the Y axis. The Z axis will be oriented along the specified up vector.
Arguments
- const Math::Vec3 & target - Coordinates of the target point in the world space.
- const Math::vec3 & up - Up vector of the node in the world space. By default, the up vector is oriented along the Z axis.
void worldLookAt ( const Math::Vec3 & target ) #
Reorients the node to "look" at the target point. The up vector is oriented along the Z axis.- If the node is a Player-related one, it will "look" at the target point along the negative Z axis. The Y axis will be oriented along the world Z axis.
- Other nodes will "look" at the target point along the Y axis.
Arguments
- const Math::Vec3 & target - Coordinates of the target point in the world space.
void rotate ( const Math::quat & r ) #
Rotates the node relative to its local coordinate system: the parent node transformation isn't taken into account. Rotation is determined by the specified quaternion.Arguments
- const Math::quat & r - Rotation quaternion.
void rotate ( const Math::vec3 & angles ) #
Rotates the node in the local space. Rotation is determined by Euler angles passed as a vec3 vector.Arguments
- const Math::vec3 & angles
void rotate ( float angle_x, float angle_y, float angle_z ) #
Rotates the node in the world space according to specified Euler angles.Arguments
- float angle_x - Pitch angle, in degrees.
- float angle_y - Roll angle, in degrees.
- float angle_z - Yaw angle, in degrees.
void worldRotate ( const Math::quat & r ) #
Rotates the node in the world space. Rotation is determined by the specified quaternion.Arguments
- const Math::quat & r - Rotation quaternion.
void worldRotate ( const Math::vec3 & angles ) #
Rotates the node in the world space. Rotation is determined by Euler angles passed as a vec3 vector.Arguments
- const Math::vec3 & angles - Vector containing Euler angles (Pitch, Yaw, Roll).
void worldRotate ( float angle_x, float angle_y, float angle_z ) #
Rotates the node in the world space according to specified Euler angles.Arguments
- float angle_x - Pitch angle, in degrees.
- float angle_y - Roll angle, in degrees.
- float angle_z - Yaw angle, in degrees.
void * addCallback ( CALLBACK_INDEX callback, Unigine::CallbackBase2< Ptr<Node>, Ptr<Property> > * func ) #
Adds a callback of the specified type. Callback functions can be used to determine actions to be performed when adding or removing node and surface properties as well as when swapping node properties. The signature of the callback function must be as follows:void callback_function_name(NodePtr node, PropertyPtr property);
NodePtr node;
void node_property_added(NodePtr node, PropertyPtr property)
{
Log::message("Property \"%s\" was added to the node named \"%s\".\n", property->getName(), node->getName());
// ...
}
// somewhere in the code
// inheriting a new property named "my_prop" from the base property "node_base"
Properties::findManualProperty("node_base")->inherit("my_prop");
// setting our callback function on adding a node property
Node::addCallback(Node::CALLBACK_PROPERTY_NODE_ADD, MakeCallback(node_property_added));
// adding the property named "my_prop" to the node
node->addProperty("my_prop");
Arguments
- CALLBACK_INDEX callback - Callback type. One of the CALLBACK_* variables.
- Unigine::CallbackBase2< Ptr<Node>, Ptr<Property> > * func - Callback pointer.
Return value
ID of the last added callback of the specified type, if the callback was added successfully; otherwise, nullptr. This ID can be used to remove this callback when necessary.void * addCallback ( CALLBACK_INDEX callback, Unigine::CallbackBase3< Ptr<Node>, Ptr<Property>, int > * func ) #
Adds a callback of the specified type. Callback functions can be used to determine actions to be performed when adding or removing node and surface properties as well as when swapping node properties. The signature of the callback function must be as follows:void callback_function_name(NodePtr node, PropertyPtr property, int arg3);
Arguments
- CALLBACK_INDEX callback - Callback type. One of the CALLBACK_* variables.
- Unigine::CallbackBase3< Ptr<Node>, Ptr<Property>, int > * func - Callback pointer.
Return value
ID of the last added callback of the specified type, if the callback was added successfully; otherwise, nullptr. This ID can be used to remove this callback when necessary.void * addCallback ( CALLBACK_INDEX callback, Unigine::CallbackBase3< Ptr<Node>, int, int > * func ) #
Adds a callback of the specified type. Callback functions can be used to determine actions to be performed when adding or removing node and surface properties as well as when swapping node properties. The signature of the callback function must be as follows:void callback_function_name(NodePtr node, int arg2, int arg3);
Arguments
- CALLBACK_INDEX callback - Callback type. One of the CALLBACK_* variables.
- Unigine::CallbackBase3< Ptr<Node>, int, int > * func - Callback pointer.
Return value
ID of the last added callback of the specified type, if the callback was added successfully; otherwise, nullptr. This ID can be used to remove this callback when necessary.bool removeCallback ( CALLBACK_INDEX callback, void * id ) #
Removes the specified callback from the list of callbacks of the specified type. Callback functions can be used to determine actions to be performed when adding or removing node and surface properties as well as when swapping node properties.Arguments
- CALLBACK_INDEX callback - Callback type. One of the CALLBACK_* variables.
- void * id - Callback ID obtained when adding it.
Return value
True if the callback of the specified type with the given ID was removed successfully; otherwise false.void clearCallbacks ( CALLBACK_INDEX callback ) #
Clears all added callbacks of the specified type. Callback functions can be used to determine actions to be performed when adding or removing node and surface properties as well as when swapping node properties.Arguments
- CALLBACK_INDEX callback - Callback type. One of the CALLBACK_* variables.
void setDirection ( const Math::vec3 & dir, const Math::vec3 & up, MathLib::AXIS axis = AXIS_NZ ) #
Updates the direction vector of the node and reorients this node: the specified axis of the node becomes oriented along the specified vector in local coordinates. For example, after running the code below, you will get the X axis of the node pointed along the Y axis in local coordinates.// get the node
NodePtr node = World::getNodeByName("material_ball");
// set the X axis to be pointed along the Y axis in local coordinates
node->setDirection(vec3(0.0f,1.0f,0.0f),vec3(0.0f,0.0f,1.0f),Math::AXIS_X);
Arguments
- const Math::vec3 & dir - New direction vector in local coordinates. The direction vector always has unit length.
- const Math::vec3 & up - New up vector in local coordinates. If you skip this argument, the Z axis (in local coordinates) will be used. Note that the specified up vector is a hint vector only: the node's up vector points in the direction hinted by the specified up vector. The node's up vector matches the specified up vector (up) only if it is perpendicular to the specified direction vector (dir).
- MathLib::AXIS axis - Axis along which the direction vector should be pointed. The default is the negative Z axis.
Math::vec3 getDirection ( MathLib::AXIS axis = AXIS_NZ ) #
Returns the normalized direction vector pointing along the given node axis in local coordinates (i.e. relative to the node's parent). By default, the direction vector pointing along the negative Z axis of the node (in local coordinates) is returned. The direction vector always has a unit length.node->getDirection(node->isPlayer() ? Math::AXIS_NZ : Math::AXIS_Y); // forward direction vector
node->getDirection(node->isPlayer() ? Math::AXIS_Z : Math::AXIS_NY); // backward direction vector
node->getDirection(node->isPlayer() ? Math::AXIS_Y : Math::AXIS_Z); // upward direction vector
node->getDirection(node->isPlayer() ? Math::AXIS_NY : Math::AXIS_NZ); // down direction vector
node->getDirection(Math::AXIS_X); // right direction vector
node->getDirection(Math::AXIS_NX); // left direction vector
Arguments
- MathLib::AXIS axis - Axis along which the direction vector points. The default is the negative Z axis.
Return value
Direction vector in local coordinates.void setWorldDirection ( const Math::vec3 & dir, const Math::vec3 & up, MathLib::AXIS axis = AXIS_NZ ) #
Updates the direction vector of the node and reorients this node: the specified axis of the node becomes oriented along the specified vector in world coordinates. For example, after running the code below, you will get the X axis of the node pointed along the Y axis in world coordinates:// get the node
NodePtr node = World::getNodeByName("material_ball");
// set the X axis to be pointed along the Y axis in world coordinates
node->setWorldDirection(vec3(0.0f,1.0f,0.0f),vec3(0.0f,0.0f,1.0f), Math::AXIS_X);
Arguments
- const Math::vec3 & dir - New direction vector in world coordinates. The direction vector always has unit length.
- const Math::vec3 & up - New up vector in world coordinates. If you skip this argument, the Z axis (in local coordinates) will be used. Note that the specified up vector is a hint vector only: the node's up vector points in the direction hinted by the specified up vector. The node's up vector matches the specified up vector (up) only if it is perpendicular to the specified direction vector (dir).
- MathLib::AXIS axis - Axis along which the direction vector should be pointed. The default is the negative Z axis.
Math::vec3 getWorldDirection ( MathLib::AXIS axis = AXIS_NZ ) #
Returns the normalized direction vector pointing along the given node axis in world coordinates. By default, the direction vector pointing along the negative Z axis of the node is returned. The direction vector always has a unit length.node->getWorldDirection(node->isPlayer() ? Math::AXIS_NZ : Math::AXIS_Y); // forward direction vector
node->getWorldDirection(node->isPlayer() ? Math::AXIS_Z : Math::AXIS_NY); // backward direction vector
node->getWorldDirection(node->isPlayer() ? Math::AXIS_Y : Math::AXIS_Z); // upward direction vector
node->getWorldDirection(node->isPlayer() ? Math::AXIS_NY : Math::AXIS_NZ); // down direction vector
node->getWorldDirection(Math::AXIS_X); // right direction vector
node->getWorldDirection(Math::AXIS_NX); // left direction vector
Arguments
- MathLib::AXIS axis - Axis along which the direction vector points. The default is the negative Z axis.
Return value
Direction vector in world coordinates.Ptr<Node> getCloneNode ( const Ptr<Node> & original_node ) #
Returns a node cloned from the specified original node.Arguments
- const Ptr<Node> & original_node - Original node that was cloned.
Return value
Clone of the specified original node if it exists; otherwise the original node itself.Ptr<Property> getCloneProperty ( const Ptr<Property> & original_property ) #
Returns a node property cloned from the specified original property.Arguments
Return value
Clone of the specified original node property if it exists; otherwise the original node property itself.void setSaveToWorldEnabled ( bool enabled ) #
Sets a value indicating if saving to *.world file is enabled for the node.Arguments
- bool enabled - true to enable saving to *.world file for the node; 0 to disable.
void setSaveToWorldEnabledRecursive ( bool enable ) #
Sets a value indicating if saving to *.world file is enabled for the node and all its children (if any).Arguments
- bool enable - true to enable saving to *.world file for the node and all its children (if any); 0 to disable.
bool isSaveToWorldEnabled ( ) #
Returns a value indicating if saving to *.world file is enabled for the node and all of its ancestors (if any).Return value
true if saving to *.world file is enabled for the node and all of its ancestors (if any); otherwise, false.bool isSaveToWorldEnabledSelf ( ) #
Returns a value indicating if saving to *.world file is enabled for the node.Return value
true if saving to *.world file is enabled for the node; otherwise, false.void setShowInEditorEnabled ( bool enabled ) #
Sets a value indicating if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node.Arguments
- bool enabled - true to enable displaying in the World Hierarchy window of the UnigineEditor for the node; 0 to disable.
void setShowInEditorEnabledRecursive ( bool enable ) #
Sets a value indicating if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node and all its children (if any).Arguments
- bool enable - true to enable displaying in the World Hierarchy window of the UnigineEditor for the node and all its children (if any); 0 to disable.
bool isShowInEditorEnabled ( ) #
Returns a value indicating if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node and all of its ancestors (if any).Return value
true if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node and all of its ancestors (if any); otherwise, false.bool isShowInEditorEnabledSelf ( ) #
Returns a value indicating if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node.Return value
true if displaying in the World Hierarchy window of the UnigineEditor is enabled for the node; otherwise, false.Node::LIFETIME getLifetime ( ) #
Returns the lifetime management type for the root (either parent or posessor) of the node, or for the node itself (if it is not a child and not possessed by any other node).Return value
Lifetime management type for the root node (see the LIFETIME enum).Node::LIFETIME getLifetimeSelf ( ) #
Returns the lifetime management type set for the node itself.Return value
Lifetime management type for the node (see the LIFETIME enum).void setLifetime ( Node::LIFETIME lifetime ) #
Arguments
- Node::LIFETIME lifetime
Ptr<WorldBoundBox> getSpatialBoundBox ( ) #
Returns a bounding box with world coordinates that participates in physics calculations, but doesn't take children into account. This bounding box is used by the spatial tree.Return value
The bounding box with world coordinates.Ptr<WorldBoundSphere> getSpatialBoundSphere ( ) #
Returns a bounding sphere with world coordinates that participates in physics calculations, but doesn't take children into account. This bounding sphere is used by the spatial tree.Return value
The bounding sphere with world coordinates.WorldBoundBox getHierarchyBoundBox ( ) #
Returns a bounding box with local coordinates that takes children into account, but doesn't participate in physics calculations. Exclusion of objects from the spatial tree significantly reduces the size of the tree and improves performance due to saving time on bounding box recalculation when transforming nodes.Return value
The bounding box with world coordinates.WorldBoundSphere getHierarchyBoundSphere ( ) #
Returns a bounding sphere with local coordinates that takes children into account, but doesn't participate in physics calculations. Exclusion of objects from the spatial tree significantly reduces the size of the tree and improves performance due to saving time on bounding sphere recalculation when transforming nodes.Return value
The bounding sphere with world coordinates.Ptr<WorldBoundBox> getHierarchyWorldBoundBox ( ) #
Returns a bounding box with world coordinates that takes children into account, but doesn't participate in physics calculations. Exclusion of objects from the spatial tree significantly reduces the size of the tree and improves performance due to saving time on bounding box recalculation when transforming nodes.Return value
The bounding box with world coordinates.Ptr<WorldBoundSphere> getHierarchyWorldBoundSphere ( ) #
Returns a bounding sphere with world coordinates that takes children into account, but doesn't participate in physics calculations. Exclusion of objects from the spatial tree significantly reduces the size of the tree and improves performance due to saving time on bounding sphere recalculation when transforming nodes.Return value
The bounding sphere with world coordinates.Ptr<WorldBoundBox> getHierarchySpatialBoundBox ( ) #
Returns a bounding box with world coordinates that takes all children and physics into account. This bounding box is used by the spatial tree.Return value
The bounding box with world coordinates.Ptr<WorldBoundSphere> getHierarchySpatialBoundSphere ( ) #
Returns a bounding sphere with world coordinates that takes all children and physics into account. This bounding sphere is used by the spatial tree.Return value
The bounding sphere with world coordinates.int getNumWorldTriggers ( ) #
Returns the number of World Triggers inside which the node is located at the moment. To access any of such triggers by its number simply call the getWorldTrigger() method.Return value
The number of World Triggers inside which the node is located at the moment, or 0 if the node is not currently inside any World Trigger.Ptr<WorldTrigger> getWorldTrigger ( int num ) #
Returns one of the World Triggers inside which the node is located at the moment by its number. For any node in the world, you can check whether it is currently inside any World Trigger and access any of such triggers by simply calling this method.Arguments
- int num - Number of the World Trigger in the list of World Triggers inside which the node is located at the moment.
Return value
World Trigger with the specified number inside which the node is located at the moment.UGUID getLostNodePropertyGUID ( int num ) const#
Returns the GUID of a lost property assigned to the node. If for some reason a property assigned to the specified slot of the node is missing, this method can be used to get it's GUID.Arguments
- int num - Target property slot number.